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Exact Matching Review 
Where is GATTACA in the human genome? 

E=183,105 
 

  
 

BLAST, MAQ, ZOOM, 
RMAP, CloudBurst 

Seed-and-extend 

Hash Table     
(>15 GB)  

MUMmer, MUMmerGPU 
 

Tree Searching 

Suffix Tree 
 (>51 GB)  

Vmatch, PacBio Aligner 
 

Binary Search 

Suffix Array    
(>15 GB) 

Brute Force 
(3 GB) 

Naive 
 

Slow & Easy 

BANANA!
BAN!!
 ANA!
  NAN!
   ANA!



Sequence Alignment Review 

Guaranteed optimal, but slow 

DP Alignment BLAST 

Seed-and-extend for "good" matches to a DB 

MUMmer 

Whole Genome Alignment w/ Suffix Tree 

Bowtie 

Fast searching for short read mapping 



Whole Genome Alignment 
with MUMmer 

 

Slides Courtesy of Adam M. Phillippy 
amp@umics.umd.edu 

 



Goal of WGA 
•  For two genomes, A and B, find a mapping from 

each position in A to its corresponding 
position in B 

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

41 bp genome 



Not so fast... 
•  Genome A may have insertions, deletions, 

translocations, inversions, duplications or SNPs 
with respect to B (sometimes all of the above) 

CCGGTAGGATATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

CCGCTAGGCTATTAAAACCCCGGAGGAG....GGCTGAGCA 



WGA visualization 
•  How can we visualize whole genome alignments? 

•  With an alignment dot plot 
–  N x M matrix 

•  Let i = position in genome A 
•  Let j = position in genome B 
•  Fill cell (i,j) if Ai shows similarity to Bj 

–  A perfect alignment between A and B would completely fill 
the positive diagonal 
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A 

B 

A 

Translocation Inversion Insertion 

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf 





MUMmer 
•  Maximal Unique Matcher (MUM) 

–  match 
•  exact match of a minimum length 

–  maximal 
•  cannot be extended in either direction without a mismatch 

–  unique 
•  occurs only once in both sequences (MUM) 
•  occurs only once in a single sequence (MAM) 
•  occurs one or more times in either sequence (MEM) 



Fee Fi Fo Fum, 
is it a MAM, MEM or MUM? 

R 

Q 

MUM : maximal unique match 
MAM : maximal almost-unique match 
MEM : maximal exact match 



Seed and Extend 
•  How can we make MUMs BIGGER? 

1.  Find MUMs 
w  using a suffix tree 

2.  Cluster MUMs 
w  using size, gap and distance parameters 

3.  Extend clusters 
w  using modified Smith-Waterman algorithm 



Seed and Extend  
visualization 

R 

Q 

FIND all MUMs 
CLUSTER consistent MUMs 
EXTEND alignments 



WGA example with nucmer 
•  Yersina pestis CO92 vs. Yersina pestis KIM 

–  High nucleotide similarity, 99.86% 
•  Two strains of the same species 

–  Extensive genome shuffling 
•  Global alignment will not work 

–  Highly repetitive 
•  Many local alignments 



WGA Alignment 

See manual at http://
mummer.sourceforge.net/manual 

 
nucmer –maxmatch CO92.fasta KIM.fasta 
-maxmatch  Find maximal exact matches (MEMs) 
 

delta-filter –m out.delta > out.filter.m 
-m  Many-to-many mapping 
 

show-coords -r out.delta.m > out.coords 
-r  Sort alignments by reference position 
 

dnadiff out.delta.m 
Construct catalog of sequence variations 
 

mummerplot --large --layout out.delta.m 
--large   Large plot 
--layout Nice layout for multi-fasta files 
--x11   Default, draw using x11 (--postscript, --png) 
*requires gnuplot 





References 
–  Documentation 

•  http://mummer.sourceforge.net 
»  publication listing 

•  http://mummer.sourceforge.net/manual 
»  documentation 

•  http://mummer.sourceforge.net/examples 
»  walkthroughs 

–  Email 
•  mummer-help@lists.sourceforge.net 
•  amp@umiacs.umd.edu 



Bowtie: Ultrafast and memory 
efficient alignment of short DNA 
sequences to the human genome 

Slides Courtesy of Ben Langmead 
(langmead@umiacs.umd.edu) 

 



Short Read Applications 
•  Genotyping: Identify Variations 

•  *-seq: Classify & measure significant peaks 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
GCGCCCTA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 

TCGGAAATT 
CGGAAATTT 
CGGAAATTT 

AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

…CC 
…CC 
…CCA 
…CCA 
…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TATGCGCCC 

GGTATAC… 
CGGTATAC 

GGAAATTTG 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
ATAC… …CC 

 GAAATTTGC 



Short Read Alignment 

•  Given a reference and a set of reads, report at 
least one “good” local alignment for each read 
if one exists 
–  Approximate answer to: where in genome did read originate? 

…TGATCATA… 
  GATCAA 

…TGATCATA… 
  GAGAAT 

better than 

•  What is “good”?  For now, we concentrate 
on: 

…TGATATTA… 
  GATcaT 

…TGATcaTA… 
  GTACAT 

better than 

–  Fewer mismatches is better 
–  Failing to align a low-quality 

base is better than failing to 
align a high-quality base 



Indexing 
•  Genomes and reads are too large for direct 

approaches like dynamic programming 
–  Genome indices can be big.  For human: 

 
 
 

•  Large indices necessitate painful compromises 
1.  Require big-memory machine 
2.  Use secondary storage 

> 35 GBs > 12 GBs > 12 GBs 

3.  Build new index each run 
4.  Subindex and do multiple passes 



Burrows-Wheeler Transform 

•  Reversible permutation of the characters in a text 

 

 
 

•  BWT(T) is the index for T 

Burrows-Wheeler 
Matrix BWM(T) 

BWT(T) T 

A block sorting lossless data compression algorithm. 
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124 

α 
β 
γ 
β 
γ 

α 

Rank: 2 

Rank: 2 

LF Property  
implicitly encodes 
Suffix Array 



Burrows-Wheeler Transform 

•  Reversible permutation of the characters in a text 

 

 
 

•  BWT(T) is the index for T 

Burrows-Wheeler 
Matrix BWM(T) 

BWT(T) T 

A block sorting lossless data compression algorithm. 
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124 

α 
β 

β 

α 

LF Property  
implicitly encodes 
Suffix Array 



Burrows-Wheeler Transform 

•  Recreating T from BWT(T) 
– Start in the first row and apply LF repeatedly, 

accumulating predecessors along the way 

Original T 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G T TA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G T TA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



BWT Short Read Mapping 
1.  Trim off very low quality bases & adapters from ends of 

sequences 

2.  Execute depth-first-search of the implicit suffix tree 
represented by the BWT 

1.  If we fail to reach the end, back-track and resume search 
2.  BWT enables searching for good end-to-end matches entirely in RAM 

1.  100s of times faster than competing approaches 

 
3.  Report the "best" n alignments 

1.  Best = fewest mismatches/edit distance, possibly weighted by QV 
2.  Some reads will have millions of equally good mapping positions 
3.  If reads are paired, try to find mapping that satisfies both 



Mapping Applications 
•  Mapping Algorithms 

–  Bowtie: (BWT) Fastest, No indels => moderate sensitivity 
–  BWA: (BWT) Fast, small indels => good sensitivity 
–  Novoalign: (Hash Table) Slow, RAM intensive, big indels => high sensitivity 

•  Variation Detection 
–  SNPs 

•  SAMTools: Bayesian model incorporating depth, quality values, also indels 
•  SOAPsnp: SAMTools + known SNPs, nucleotide specific errors, no indels 

–  Structural Variations 
•  Hydra: Very sensitive alignment, scan for discordant pairs 
•  Large indels: Open Research Problem to assembly their sequence 

–  Copy number changes 
•  RDexplorer: Scan alignments for statistically significant coverage pileup 

–   Microsatellite variations 
•  See Mitch! 

 



Sequence Alignment Summary 
•  Distance metrics: 

–  Hamming: How many substitutions? 
–  Edit Distance: How many substitutions or indels? 
–  Sequence Similarity: How similar (under this model of similarity)? 

•  Techniques 
–  Seed-and-extend: Anchor the search for in-exact using exact only 
–  Dynamic Programming: Find a global optimal as a function of its parts 
–  BWT Search: implicit DFS of SA/ST  

•  Sequence Alignment Algorithms: Pick the right tool for the job 
–  Smith-Waterman: DP Local sequence alignment 
–  BLAST: Homology Searching 
–  MUMmer: Whole genome alignment, short read mapping (with care) 
–  Bowtie/BWA/Novoalign: short read mapping 

 



Break 



Graphs 

A B 

•  Nodes 
–  People, Proteins, Genes, Neurons, Sequences, Numbers, … 
 

•  Edges 
–  A is connected to B 
–  A is related to B 
–  A regulates B 
–  A precedes B  
–  A interacts with B 
–  A is related to B 
–  … 



Biological Networks 



Graph Types 

A 

B 

C 

List Tree 

A 

B C D 

F H G E 

I J 

Directed  
Acyclic  
Graph 

A 

C D E 

F 

G 

B 

A 

B C 

D E 

Cycle 

A 

B C 

D E 

Complete 



Kevin Bacon and Bipartite Graphs 
72 

60 

35 

31 

45 

Q1: 
Find any path 

from 
Kevin Bacon 

to 
Jason Lee 

Depth First Search:  
6 hops 

 
Bacon Distance: 

3 



Kevin Bacon and Bipartite Graphs 
72 

60 

35 

31 

45 

Q2: 
Find the shortest 

path from 
Kevin Bacon 

to 
Jason Lee 

Breadth First Search:  
4 hops 

 
Bacon Distance: 

2 
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DFS(start, stop) 
// initialize all nodes dist = -1 
start.dist = 0 
list.addEnd(start) 
while (!list.empty()) 
   cur = list.end()  
   if (cur == stop)  
      print cur.dist; 
   else 
      foreach child in cur.children 
         if (child.dist == -1) 
             child.dist = cur.dist+1 
             list.addEnd(child)  
 

DFS 

 
[How many nodes will it visit?] 
 
 
[What's the running time?] 
 
[What happens for disconnected 
components?] 
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BFS 
BFS(start, stop) 
// initialize all nodes dist = -1 
start.dist = 0 
list.addEnd(start) 
while (!list.empty()) 
   cur = list.begin()  
   if (cur == stop)  
      print cur.dist; 
   else 
      foreach child in cur.children 
         if (child.dist == -1) 
             child.dist = cur.dist+1 
             list.addEnd(child)  
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DFS(start, stop) 
// initialize all nodes dist = -1 
start.dist = 0 
list.addEnd(start) 
while (!list.empty()) 
   cur = list.end()  
   if (cur == stop)  
      print cur.dist; 
   else 
      foreach child in cur.children 
         if (child.dist == -1) 
             child.dist = cur.dist+1 
             list.addEnd(child)  
 

DFS 
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BFS and TSP 
•  BFS computes the shortest path between a 

pair of nodes in O(|E|) = O(|N|2) 

•  What if we wanted to compute the shortest 
route visiting every node once? 
– Traveling Salesman Problem 

C 

A 

D 

B 
4 

1 

3 

1 

5 

2 

ABDCA: 4+2+5+3 = 14 
ACDBA: 3+5+2+4 = 14* 
ABCDA: 4+1+5+1 = 11 
ADCBA: 1+5+1+4 = 11* 
ACBDA: 3+1+2+1 = 7 
ADBCA: 1+2+1+3= 7 * 



Greedy Search 
Greedy Search 
cur=graph.smallestEdge() 
while (!done) 

 next=cur.getNextClosest() 
 
Greedy:  ABDCA = 1+1+1+50= 53 
Optimal:  ACBDA = 1+19+1+21 = 42 
 
Greedy finds the global optimum only when 
1.  Greedy Choice: Local is correct without reconsideration 
2.  Optimal Substructure: Problem can be split into subproblems 

Optimal Greedy: Making change with the fewest number of coins 

C 

A 

D 

B 
1 

19 

1 

21 

50 

1 



TSP Hardness 

•  No known way to partition the 
problem 
–  Knowing optimal tour through n cities 

doesn't seem to help much for n+1 
cities 

 
[How many possible tours for n cities?] 

•  Extensive searching is the only 
known provably correct algorithm 
–  Brute Force: 

•  ~20 cities max 
•  20! = 2.4 x 1018 
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Branch-and-Bound 
•  Abort on suboptimal solutions 

as soon as possible 
–  ADBECA = 1+2+2+2+3 = 10 
–  ABDE = 4+2+30 > 10 
–  ADE = 1+30 > 10 
–  AED = 1+30 > 10 
–  … 

C 

A 

D 

B 
4 

1 

3 

1 

5 

2 

E 
30 2 

1 
2 

•  Performance Heuristic 
–  Always gives the optimal answer 
–  Doesn't always help performance, but often does 
–  Current TSP record holder: 

•  85,900 cities  
•  85900! = 10386526 

[When not?] 



TSP and NP-complete 
•  TSP is one of many extremely hard 

problems of the class NP-complete 
–  Extensive searching is the only way to 

find an exact solution 
–  Often have to settle for approx. solution 

•  WARNING:  Many optimization problems are in this class 
–  Find a tour the visits every node once 
–  Find the smallest set of vertices covering all the edges 
–  Find the largest clique in the graph 
–  Find a set of items with maximal value but limited weight 
–  Maximizing the number of tetris pieces played 
–  … 
–  http://en.wikipedia.org/wiki/List_of_NP-complete_problems 



Given: S = {s1, …, sn} 

Problem: Find minimal length superstring of S 

s1,s2,s3 = CACCCGGGTGCCACC  15  

s1,s3,s2 = CACCCACCGGGTGC 14 

s2,s1,s3 = CCGGGTGCACCCACC  15 

s2,s3,s1 = CCGGGTGCCACCC  13 

s3,s1,s2 = CCACCCGGGTGC  12 

s3,s2,s1 = CCACCGGGTGCACCC  15 

s1 CACCC 

s2 CCGGGTGC 

s3 CCACC 

NP-Complete by reduction from VERTEX-COVER and later DIRECTED-HAMILTONIAN-PATH 

Shortest Common Superstring 



Paths through graphs and assembly 

•  Hamiltonian circuit: visit each node (read) 
exactly once, returning to the start 
–  If we could do this fast, we could exactly assemble 

genomes as the shortest common superstring  
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Assembling a Genome 

2. Construct assembly graph from overlapping reads 

…AGCCTAGACCTACAGGATGCGCGACACGT 

              GGATGCGCGACACGTCGCATATCCGGT… 

3. Simplify assembly graph 

 1. Shear & Sequence DNA 

4. Detangle graph with long reads, mates, and other links 



Illumina Sequencing by Synthesis 

Metzker (2010) Nature Reviews Genetics 11:31-46 
http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf 

1. Prepare 

2. Attach 

3. Amplify 

4. Image 

5. Basecall 



Paired-end and Mate-pairs 
Paired-end sequencing 
•  Read one end of the molecule, flip, and read the other end 
•  Generate pair of reads separated by up to 500bp with inward orientation 

Mate-pair sequencing 
•  Circularize long molecules (1-10kbp), shear into fragments, & sequence 
•  Mate failures create short paired-end reads 

10kbp 

10kbp 
circle 

300bp 

2x100 @ ~10kbp (outies) 

2x100 @ 300bp (innies) 



Typical contig coverage 
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Imagine raindrops on a sidewalk 



Genome Coverage Distribution 

This is the mathematically model => reality may be much worse 
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Coverage and Read Length 
Idealized Lander-Waterman model 
•  Reads start at perfectly random 

positions 

•  Poisson distribution in coverage 
–  Contigs end when there are no 

overlapping reads 

•  Contig length is a function of 
coverage and read length 
–  Effective coverage reduced by o/l 
–  Short reads require much higher 

coverage to reach same expected 
contig length 

Lander Waterman Expected Contig Length vs Coverage

Read Coverage
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Assembly of Large Genomes using Second Generation Sequencing 
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.  



Two Paradigms for Assembly 

Short read assemblers 
•  Repeats depends on word length 
•  Read coherency, placements lost 
•  Robust to high coverage 

Assembly of Large Genomes using Second Generation Sequencing 
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.  

de	  Bruijn	  Graph	  

GTT 

GTC 

TTA 

TCC 

AGT AAG 

GAA 

TAA 

AGA 

ATA 

Long read assemblers 
•  Repeats depends on read length 
•  Read coherency, placements kept 
•  Tangled by high coverage 

Overlap	  Graph	  
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W 



Initial Contigs 
•  After simplification and correction, compress graph 

down to its non-branching initial contigs 
–  Aka “unitigs”, “unipaths”  



Repeats and Read Length 

•  Explore the relationship between read length and contig N50 size 
–  Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000 
–  Contig/Read length relationship depends on specific repeat composition 
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Bacillus anthracis       
5.22Mbp 

Colwellia psychrerythraea 
5.37Mbp 

Escherichia coli K12 
4.64Mbp 

Salmonella typhi      
4.80Mbp 

Yersinia pestis         
4.70Mbp 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. 11:21. 



Repetitive regions 
•  Over 50% of the human genome is repetitive 
 

61 

Repeat Type Definition / Example Prevalence 

Low-complexity DNA / Microsatellites (b1b2…bk)N where 1 < k < 6 
CACACACACACACACACACA 

2% 

SINEs (Short Interspersed Nuclear 
Elements) 

Alu sequence (~280 bp) 
Mariner elements (~80 bp) 

13% 

LINEs (Long Interspersed Nuclear 
Elements) 

~500 – 5,000 bp 21% 

LTR (long terminal repeat) 
retrotransposons 

Ty1-copia, Ty3-gypsy, Pao-BEL 
(~100 – 5,000 bp) 

8% 

Other DNA transposons 3% 

Gene families & segmental duplications 4% 



Repeats and Coverage Statistics A-stat 

•! If n reads are a uniform random sample of the genome of length G, 
we expect k=n!/G reads to start in a region of length!. 

–! If we see many more reads than k (if the arrival rate is > A) , it is likely to be 
a collapsed repeat   

–! Requires an accurate genome size estimate 
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Scaffolding 
•  Initial contigs (aka unipaths, unitigs) terminate at 

–  Coverage gaps: especially extreme GC regions 
–  Conflicts: sequencing errors, repeat boundaries 

•  Iteratively resolve longest, ‘most unique’ contigs 
–  Both overlap graph and de Bruijn assemblers initially collapse 

repeats into single copies 
–  Uniqueness measured by a statistical test on coverage 



N50 size 
Def: 50% of the genome is in contigs larger than N50 

Example:  1 Mbp genome 
 
 
 
 
 

 N50 size = 30 kbp  
  (300k+100k+45k+45k+30k = 520k >= 500kbp) 

 
Note: 

N50 values are only meaningful to compare when base genome 
size is the same in all cases 

1000 

300 45 30 100 20 15 15 10 . . . . . 45 

50% 



Assembly Algorithms 

ALLPATHS-LG SOAPdenovo Celera Assembler 

Broad’s assembler 
(Gnerre et al. 2011) 

 
De bruijn graph 

Short + PacBio (patching) 
 

Easy to run if you have 
compatible libraries 

  
http://www.broadinstitute.org/

software/allpaths-lg/blog/ 

BGI’s assembler 
(Li et al. 2010) 

 
De bruijn graph 

Short reads 
 

Most flexible, but requires a 
lot of tuning 

 
http://soap.genomics.org.cn/

soapdenovo.html 

JCVI’s assembler 
(Miller et al. 2008) 

 
Overlap graph 

Medium + Long reads 
 

Supports Illumina/454/PacBio 
Hybrid assemblies 

 
http://wgs-assembler.sf.net 



•  Attempt to answer the question: 
  “What makes a good assembly?” 

•  Organizers provided simulated sequence data 
–  Simulated 100 base pair Illumina reads from simulated 

diploid organism 

•  41 submissions from 17 groups 

•  Results demonstrate trade-offs assemblers must make 



Assembly Results 

•  No assembler was perfect! 
– See tomorrow’s in house for details 

 



Summary 
Graphs are ubiquitous in the world 

–  Pairwise searching is easy, finding features is hard 
 
Assembly quality depends on  
1.  Coverage: low coverage is mathematically hopeless 
2.  Repeat composition: high repeat content is challenging 
3.  Read length: longer reads help resolve repeats 
4.  Error rate: errors reduce coverage, obscure true overlaps 

Assembly is a hierarchical, starting from individual reads, build high 
confidence contigs/unitigs, incorporate the mates to build scaffolds  

–  Extensive error correction is the key to getting the best assembly possible 
from a given data set 



Supplemental 



BWT Exact Matching 
•  LFc(r, c) does the same thing as LF(r) but it 

ignores r’s actual final character and 
“pretends” it’s c: 

Rank: 2 Rank: 2 

L 

F 

LFc(5, g) = 8  

g 



BWT Exact Matching 
•  Start with a range, (top, bot) encompassing all 

rows and repeatedly apply LFc: 
top = LFc(top, qc); bot = LFc(bot, qc) 
qc = the next character to the left in the query 

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000. 



BWT Exact Matching 

•  If range becomes empty (top = bot) the 
query suffix (and therefore the query as a 
whole) does not occur 


