Alignment & Assembly Michael Schatz

Bioinformatics Lecture 3 Quantitative Biology 2011

Exact Matching Review

Where is GATTACA in the human genome? E=183,105

Sequence Alignment Review

Whole Genome Alignment with MUMmer

Slides Courtesy of Adam M. Phillippy <u>amp@umics.umd.edu</u>

• For two genomes, A and B, find a mapping from each position in A to its corresponding position in B

CCGGTAGGCTATTAAACGGGGGTGAGGAGCGTTGGCATAGCA

Not so fast...

 Genome A may have insertions, deletions, translocations, inversions, duplications or SNPs with respect to B (sometimes all of the above)

WGA visualization

- How can we visualize *whole* genome alignments?
- With an alignment dot plot T $-N \times M$ matrix G• Let i = position in genome A• Let j = position in genome B• Fill cell (*i*,*j*) if A_i shows similarity to B_j

 A perfect alignment between A and B would completely fill the positive diagonal

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf

Α

MUMmer

- <u>Maximal Unique Matcher (MUM)</u>
 - match
 - exact match of a minimum length
 - maximal
 - cannot be extended in either direction without a mismatch
 - unique
 - occurs only once in both sequences (MUM)
 - occurs only once in a single sequence (MAM)
 - occurs one or more times in either sequence (MEM)

Fee Fi Fo Fum, is it a MAM, MEM or MUM?

 MUM : maximal unique match

 MAM : maximal almost-unique match

 MEM : maximal exact match

Seed and Extend

- How can we make MUMs **BIGGER?**
 - I. Find MUMs
 - using a suffix tree
 - 2. Cluster MUMs
 - using size, gap and distance parameters
 - 3. Extend clusters
 - using modified Smith-Waterman algorithm

Seed and Extend visualization

FIND all MUMs CLUSTER consistent MUMs EXTEND alignments

WGA example with **nucmer**

- Yersina pestis CO92 vs. Yersina pestis KIM
 - High nucleotide similarity, 99.86%
 - Two strains of the same species
 - Extensive genome shuffling
 - Global alignment will not work
 - Highly repetitive
 - Many local alignments

WGA Alignment

nucmer -maxmatch CO92.fasta KIM.fasta

-maxmatch Find maximal exact matches (MEMs)

delta-filter -m out.delta > out.filter.m

-m Many-to-many mapping

show-coords -r out.delta.m > out.coords

-r Sort alignments by reference position

dnadiff out.delta.m

Construct catalog of sequence variations

mummerplot --large --layout out.delta.m

--large Large plot
--layout Nice layout for multi-fasta files
--x11 Default, draw using x11 (--postscript, --png)
*requires gnuplot

References

Documentation

- http://mummer.sourceforge.net
 - » publication listing
- http://mummer.sourceforge.net/manual
 - » documentation
- http://mummer.sourceforge.net/examples
 - » walkthroughs
- Email
 - mummer-help@lists.sourceforge.net
 - amp@umiacs.umd.edu

Bowtie: Ultrafast and memory efficient alignment of short DNA sequences to the human genome

Slides Courtesy of Ben Langmead (langmead@umiacs.umd.edu)

Short Read Applications

• Genotyping: Identify Variations

• *-seq: Classify & measure significant peaks

Short Read Alignment

 Given a reference and a set of reads, report at least one "good" local alignment for each read if one exists

- Approximate answer to: where in genome did read originate?

- What is "good"? For now, we concentrate on:
 - Fewer mismatches is better
 - Failing to align a low-quality base is better than failing to align a high-quality base

Indexing

- Genomes and reads are too large for direct approaches like dynamic programming
 - Genome indices can be big. For human:

- Large indices necessitate painful compromises
 - I. Require big-memory machine
 - 2. Use secondary storage

- 3. Build new index each run
- 4. Subindex and do multiple passes

Burrows-Wheeler Transform

Reversible permutation of the characters in a text

• BWT(T) is the index for T

implicitly encodes Suffix Array

A block sorting lossless data compression algorithm. Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124

Burrows-Wheeler Transform

Reversible permutation of the characters in a text

• BWT(T) is the index for T

implicitly encodes Suffix Array

A block sorting lossless data compression algorithm. Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124

Burrows-Wheeler Transform

- Recreating T from BWT(T)
 - Start in the first row and apply LF repeatedly, accumulating predecessors along the way

BWT(Reference)

BWT(Reference)

BWT(Reference)

BWT Short Read Mapping

- Trim off very low quality bases & adapters from ends of sequences
- 2. Execute depth-first-search of the implicit suffix tree represented by the BWT
 - I. If we fail to reach the end, back-track and resume search
 - 2. BWT enables searching for good end-to-end matches entirely in RAM
 - I. 100s of times faster than competing approaches
- 3. Report the "best" n alignments
 - I. Best = fewest mismatches/edit distance, possibly weighted by QV
 - 2. Some reads will have millions of equally good mapping positions
 - 3. If reads are paired, try to find mapping that satisfies both

Mapping Applications

- Mapping Algorithms
 - Bowtie: (BWT) Fastest, No indels => moderate sensitivity
 - BWA: (BWT) Fast, small indels => good sensitivity
 - Novoalign: (Hash Table) Slow, RAM intensive, big indels => high sensitivity
- Variation Detection
 - SNPs
 - SAMTools: Bayesian model incorporating depth, quality values, also indels
 - SOAPsnp: SAMTools + known SNPs, nucleotide specific errors, no indels
 - Structural Variations
 - Hydra: Very sensitive alignment, scan for discordant pairs
 - Large indels: Open Research Problem to assembly their sequence
 - Copy number changes
 - RDexplorer: Scan alignments for statistically significant coverage pileup
 - Microsatellite variations
 - See Mitch!

Sequence Alignment Summary

- Distance metrics:
 - Hamming: How many substitutions?
 - Edit Distance: How many substitutions or indels?
 - Sequence Similarity: How similar (under this model of similarity)?
- Techniques
 - Seed-and-extend: Anchor the search for in-exact using exact only
 - Dynamic Programming: Find a global optimal as a function of its parts
 - BWT Search: implicit DFS of SA/ST
- Sequence Alignment Algorithms: Pick the right tool for the job
 - Smith-Waterman: DP Local sequence alignment
 - BLAST: Homology Searching
 - MUMmer: Whole genome alignment, short read mapping (with care)
 - Bowtie/BWA/Novoalign: short read mapping
Break

- Nodes
 - People, Proteins, Genes, Neurons, Sequences, Numbers, ...
- Edges
 - A is connected to B
 - A is related to B
 - A regulates B
 - A precedes B
 - A interacts with B
 - A is related to B

- ...

Biological Networks

Figure 5 Putative regulatory elements shared between groups of correlated and anticorrelated genes

Graph Types

Kevin Bacon and Bipartite Graphs

Q1: Find *any* path from Kevin Bacon to Jason Lee

Depth First Search: 6 hops

Bacon Distance: 3

Kevin Bacon and Bipartite Graphs

DFS

DFS(start, stop)

// initialize all nodes dist = -1start.dist = 0list.addEnd(start) while (!list.empty()) cur = list.end() if (cur == stop) print cur.dist; else foreach child in cur.children if (child.dist == -1) child.dist = cur.dist+llist.addEnd(child)

 A,B,G,\underline{H} A,B,G,<u>M</u> A,B,<u>G</u> A,B,<u>L</u> A,B,<u>O</u> A,B,<u>N</u> A,B,<u>J</u> A,B,E,<u>F</u> A,B,E,<u>K</u> A,B,<u>E</u> A,<u>B</u> <u>A</u> <u>D</u> I E:7

<u>0</u> A,B,<u>C</u>

[How many nodes will it visit?]

[What's the running time?]

[What happens for disconnected components?]

DFS

DFS(start, stop)

// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
 cur = list.end()
 if (cur == stop)
 print cur.dist;
 else
 foreach child in cur.children
 if (child.dist == -1)
 child.dist = cur.dist+1
 list.addEnd(child)

F:7

<u>0</u> A,B,<u>C</u> A,B,G,<u>H</u> A,B,G,<u>M</u> A,B,<u>G</u> A,B,<u>L</u> A,B,<u>O</u> A,B,<u>N</u> A,B,<u>J</u> A,B,E,<u>F</u> A,B,E,K A,B,<u>E</u> А,<u>В</u> <u>A</u> <u>D</u>

0

BFS

BFS(start, stop) // initialize all nodes dist = -1start.dist = 0list.addEnd(start) while (!list.empty()) cur = list.begin() if (cur == stop) print cur.dist; else foreach child in cur children if (child.dist == -1) child.dist = cur.dist+1list.addEnd(child) D:2 **F:**2

G:2

H:2

A,B,C B,C,D,E <u>C</u>,D,E,F,L D,E,F,L,G,H <u>E</u>,F,L,G,H,I <u>F</u>,L,G,H,I,J L,G,H,I,J,K <u>G</u>,H,I,J,K,O <u>H</u>,I,J,K,O I,J,K,O,M J,K,O,M <u>K</u>,O,M,N <u>O</u>,M,N <u>M</u>,N Ν

BFS and **TSP**

- BFS computes the shortest path between a pair of nodes in $O(|E|) = O(|N|^2)$
- What if we wanted to compute the shortest route visiting every node once?
 - Traveling Salesman Problem

Greedy Search

Greedy Search

cur=graph.smallestEdge()
while (!done)
next=cur.getNextClosest()

Greedy: ABDCA = 1+1+1+50=53Optimal: ACBDA = 1+19+1+21=42

Greedy finds the global optimum only when

- I. Greedy Choice: Local is correct without reconsideration
- 2. Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Making change with the fewest number of coins

TSP Hardness

- No known way to partition the problem
 - Knowing optimal tour through n cities doesn't seem to help much for n+I cities

[How many possible tours for n cities?]

- Extensive searching is the only known provably correct algorithm
 - Brute Force:
 - ~20 cities max
 - 20! = 2.4×10^{18}

Branch-and-Bound

- Abort on suboptimal solutions as soon as possible
 - ADBECA = 1+2+2+2+3 = 10
 - ABDE = 4+2+30 > 10
 - -ADE = |+30 > |0|
 - AED = I + 30 > 10

— …

- Performance Heuristic
 - Always gives the optimal answer
 - Doesn't always help performance, but often does
 - Current TSP record holder:
 - 85,900 cities
 - 85900! = 10^{386526}

[When not?]

TSP and NP-complete

- TSP is one of many extremely hard problems of the class NP-complete
 - Extensive searching is the only way to find an exact solution
 - Often have to settle for approx. solution

- WARNING: Many optimization problems are in this class
 - Find a tour the visits every node once
 - Find the smallest set of vertices covering all the edges
 - Find the largest clique in the graph
 - Find a set of items with maximal value but limited weight
 - Maximizing the number of tetris pieces played
 - ...
 - http://en.wikipedia.org/wiki/List_of_NP-complete_problems

Shortest Common Superstring

Given: $S = \{s_1, ..., s_n\}$

Problem: Find minimal length superstring of S

 $s_{1}, s_{2}, s_{3} = CACCCGGGTGCCACC \quad 15$ $s_{1} CACCC \qquad s_{1}, s_{3}, s_{2} = CACCCACCGGGTGC14$ $s_{2} CCGGGTGC \qquad s_{2}, s_{1}, s_{3} = CCGGGTGCACCCACC \quad 15$ $s_{3} CCACC \qquad s_{2}, s_{3}, s_{1} = CCGGGTGCCACCC \quad 13$ $s_{3}, s_{1}, s_{2} = CCACCCGGGTGC \quad 12$ $s_{3}, s_{2}, s_{3} = CCACCGGGTGCACCC \quad 15$

NP-Complete by reduction from VERTEX-COVER and later DIRECTED-HAMILTONIAN-PATH

Paths through graphs and assembly

- Hamiltonian circuit: visit each node (read) exactly once, returning to the start
 - If we could do this fast, we could exactly assemble genomes as the shortest common superstring

Assembling a Genome

2. Construct assembly graph from overlapping reads

...AGCCTAGACCTACAGGATGCGCGACACGT GGATGCGCGACACGTCGCATATCCGGT...

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Illumina Sequencing by Synthesis

http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation

Mate-pair sequencing

- Circularize long molecules (1-10kbp), shear into fragments, & sequence
- Mate failures create short paired-end reads

10kbp

Typical contig coverage

Imagine raindrops on a sidewalk

Genome Coverage Distribution

This is the mathematically model => reality may be much worse

Coverage and Read Length

Idealized Lander-Waterman model

- Reads start at perfectly random positions
- Poisson distribution in coverage
 - Contigs end when there are no overlapping reads
- Contig length is a function of coverage and read length
 - Effective coverage reduced by o/l
 - Short reads require much higher coverage to reach same expected contig length

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) *Genome Research*. 20:1165-1173.

Two Paradigms for Assembly

Short read assemblers

- Repeats depends on word length
- Read coherency, placements lost
- Robust to high coverage

Long read assemblers

- Repeats depends on read length
- Read coherency, placements kept
- Tangled by high coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) *Genome Research*. 20:1165-1173.

Initial Contigs

- After simplification and correction, compress graph down to its non-branching initial contigs
 - Aka "unitigs", "unipaths"

Repeats and Read Length

- Explore the relationship between read length and contig N50 size
 - Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000
 - Contig/Read length relationship depends on specific repeat composition

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) *BMC Bioinformatics*. 11:21.

Repetitive regions

• Over 50% of the human genome is repetitive

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$(b_1b_2b_k)^N$ where $I \le k \le 6$ CACACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	<i>Alu</i> sequence (~280 bp) Mariner elements (~80 bp)	13%
LINEs (Long Interspersed Nuclear Elements)	~500 – 5,000 bp	21%
LTR (long terminal repeat) retrotransposons	Ту I -copia, Ту3-gypsy, Pao-BEL (~100 – 5,000 bp)	8%
Other DNA transposons		3%
Gene families & segmental duplications		4%

- If *n* reads are a uniform random sample of the genome of length *G*, we expect $k=n\Delta/G$ reads to start in a region of length Δ .
 - If we see many more reads than k (if the arrival rate is > A), it is likely to be a collapsed repeat
 - Requires an accurate genome size estimate

$$\Pr(X - copy) = \binom{n}{k} \left(\frac{X\Delta}{G}\right)^{k} \left(\frac{G - X\Delta}{G}\right)^{n-k} \qquad A(\Delta, k) = \ln\left(\frac{\Pr(1 - copy)}{\Pr(2 - copy)}\right) = \ln\left(\frac{\frac{(\Delta n/G)^{k}}{k!}e^{\frac{-\Delta n}{G}}}{\frac{(2\Delta n/G)^{k}}{k!}e^{\frac{-2\Delta n}{G}}}\right) = \frac{n\Delta}{G} - k\ln 2$$

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
 - Coverage gaps: especially extreme GC regions
 - Conflicts: sequencing errors, repeat boundaries
- Iteratively resolve longest, 'most unique' contigs
 - Both overlap graph and de Bruijn assemblers initially collapse repeats into single copies
 - Uniqueness measured by a statistical test on coverage

N50 size

Def: 50% of the genome is in contigs larger than N50


```
N50 size = 30 \text{ kbp}
```

```
(300k+100k+45k+45k+30k = 520k \ge 500kbp)
```

Note:

N50 values are only meaningful to compare when base genome size is the same in all cases

Assembly Algorithms

- Attempt to answer the question:
 "What makes a good assembly?"
- Organizers provided simulated sequence data
 - Simulated 100 base pair Illumina reads from simulated diploid organism
- 41 submissions from 17 groups
- Results demonstrate trade-offs assemblers must make

Assembly Results

No assembler was perfect!
 – See tomorrow's in house for details

Summary

Graphs are ubiquitous in the world

- Pairwise searching is easy, finding features is hard

Assembly quality depends on

- I. Coverage: low coverage is mathematically hopeless
- 2. Repeat composition: high repeat content is challenging
- 3. Read length: longer reads help resolve repeats
- 4. Error rate: errors reduce coverage, obscure true overlaps

Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds

 Extensive error correction is the key to getting the best assembly possible from a given data set

Supplemental

BWT Exact Matching

 LFc(r, c) does the same thing as LF(r) but it ignores r's actual final character and "pretends" it's c:

BWT Exact Matching

 Start with a range, (top, bot) encompassing all rows and repeatedly apply LFc:
 top = LFc(top, qc); bot = LFc(bot, qc)

qc = the next character to the left in the query

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.

BWT Exact Matching

 If range becomes empty (top = bot) the query suffix (and therefore the query as a whole) does not occur