Alignment \& Assembly Michael Schatz

Bioinformatics Lecture 3
Quantitative Biology 20II

Exact Matching Review

Where is GATTACA in the human genome?

$$
E=183,105
$$

Sequence Alignment Review

DP Alignment

		\mathbf{A}	C	A	C	A	C	T	A
	$\underline{0}$	1	2	3	4	5	6	7	8
A	1	$\underline{0}$	1	2	3	4	5	6	7
G	2	$\underline{1}$	1	2	3	4	5	6	7
C	3	2	$\underline{1}$	2	2	3	4	5	6
A	4	3	2	1	2	2	3	4	5
C	5	4	3	2	$\underline{1}$	2	2	3	4
A	6	5	4	3	2	$\underline{1}$	2	3	3
C	7	6	5	4	3	2	$\underline{1}$	$\underline{2}$	3
A	8	7	6	5	4	3	2	2	$\underline{2}$

D[AGCACACA,ACACACTA] $=2$
AGCACAC-A
$|*||||*|$
A-CACACTA
Guaranteed optimal, but slow

Whole Genome Alignment w/ Suffix Tree

BLAST

Very Similar Sequences

Query: HBA_ HUMAN Hemoglobin alpha subunit
Sbjct: HBB_HUMAN Hemoglobin beta subunit
Score $=114$ bits (285), Expect $=1$ e-2
Identities $=61 / 145$ (42\%), Positives $=86 / 145$ (59\%), Gaps $=8 / 145$ (5\%)
Quexy 2 ISPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF------DLSHGSAQV 55

Query 56 KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLIVTLAAAHLPA 115
HGKKV A ++ +AH+D+
Sbict 61 KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 12
Query 116 EFTPAVHASLDKFLASVSTVLTSKY 140
EFTP $V \mathrm{~V}_{\mathrm{A}} \mathrm{K}+\mathrm{A} \mathrm{V}+\mathrm{L} \quad \mathrm{KY}$
Sbict 121 EFTPPVQAAYOKVVAGVANALAHKY 145
Seed-and-extend for "good" matches to a DB
Bowtie

- Reversible permutation of the characters in a text

- $\operatorname{BWT}(T)$ is the index for T

LF Property implicitly encodes Suffix Array

Fast searching for short read mapping

Whole Genome Alignment with MUMmer

Slides Courtesy of Adam M. Phillippy
amp@umics.umd.edu

Goal ofWGA

- For two genomes, A and B, find a mapping from each position in A to its corresponding position in B

Not so fast...

- Genome A may have insertions, deletions, translocations, inversions, duplications or SNPs with respect to B (sometimes all of the above)

WGA visualization

- How can we visualize whole genome alignments?
- With an alignment dot plot
- N x M matrix
- Let $i=$ position in genome A
- Let $j=$ position in genome B
- Fill cell (i, j) if A_{i} shows similarity to B_{j}

- A perfect alignment between A and B would completely fill the positive diagonal

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf

MUMmer

- Maximal Unique Matcher (MUM)
- match
- exact match of a minimum length
- maximal
- cannot be extended in either direction without a mismatch
- unique
- occurs only once in both sequences (MUM)
- occurs only once in a single sequence (MAM)
- occurs one or more times in either sequence (MEM)

Fee Fi Fo Fum, is it a MAM, MEM or MUM?

MUM : maximal unique match
MAM : maximal almost-unique match \quad - - - - - - - - - - - MEM : maximal exact match

Seed and Extend

- How can we make MUMs BIGGER?
I. Find MUMs
- using a suffix tree

2. Cluster MUMs

- using size, gap and distance parameters

3. Extend clusters

- using modified Smith-Waterman algorithm

Seed and Extend

 visualizationFIND all MUMs
CLUSTER consistent MUMs
EXTEND alignments

WGA example with nucmer

- Yersina pestis CO92 vs. Yersina pestis KIM
- High nucleotide similarity, 99.86\%
- Two strains of the same species
- Extensive genome shuffling
- Global alignment will not work
- Highly repetitive
- Many local alignments

WGA Alignment

```
nucmer -maxmatch CO92.fasta KIM.fasta
-maxmatch Find maximal exact matches (MEMs)
delta-filter -m out.delta > out.filter.m
-m Many-to-many mapping
show-coords -r out.delta.m > out.coords
-r Sort alignments by reference position
dnadiff out.delta.m
Construct catalog of sequence variations
mummerplot --large --layout out.delta.m
--large Large plot
--layout Nice layout for multi-fasta files
--x11 Default, draw using x11 (--postscript, --png)
*requires gnuplot
```


References

- Documentation
- http://mummer.sourceforge.net
» publication listing
- http://mummer.sourceforge.net/manual
» documentation
- http://mummer.sourceforge.net/examples
» walkthroughs
- Email
- mummer-help@lists.sourceforge.net
- amp@umiacs.umd.edu

Bowtie: Ultrafast and memory efficient alignment of short DNA sequences to the human genome

Slides Courtesy of Ben Langmead
(langmead@umiacs.umd.edu)

Short Read Applications

- Genotyping: Identify Variations

- *-seq: Classify \& measure significant peaks

Short Read Alignment

- Given a reference and a set of reads, report at least one "good" local alignment for each read if one exists
- Approximate answer to: where in genome did read originate?
- What is "good"? For now, we concentrate on:
- Fewer mismatches is better

```
...TGATGATA... better than ...TGATCATA...
```

- Failing to align a low-quality
 base is better than failing to align a high-quality base

Indexing

- Genomes and reads are too large for direct approaches like dynamic programming
- Genome indices can be big. For human:

$>12 \mathrm{GBs}$

$>12 \mathrm{GBs}$
- Large indices necessitate painful compromises
I. Require big-memory machine

2. Use secondary storage
3. Build new index each run
4. Subindex and do multiple passes

Burrows-Wheeler Transform

- Reversible permutation of the characters in a text

- $\operatorname{BWT}(\mathrm{T})$ is the index for T

A block sorting lossless data compression algorithm.
Burrows M,Wheeler DJ (1994) Digital Equipment Corporation. Technical Report I24

Burrows-Wheeler Transform

- Reversible permutation of the characters in a text

acaacg\$ \longrightarrow	\$ acalac	
	a a cog \$ a c	
	acaacg \$	
	acg\$aca	gc\$aaac
T	c a a cog \$ a	BWT(T)
	c g \$ abc a a	
	g \$ asc a a c	
	Burrows-Wheeler Matrix BWM(T)	
		LF Property implicitly encodes
WT(T) is the index for T		Suffix Array

A block sorting lossless data compression algorithm.
Burrows M,Wheeler DJ (1994) Digital Equipment Corporation. Technical Report I24

Burrows-Wheeler Transform

- Recreating T from BWT(T)
- Start in the first row and apply LF repeatedly, accumulating predecessors along the way

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

CuOU00 0005

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGTTACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGTTACGGCGACCACCGAGATCTA

BWT Short Read Mapping

I. Trim off very low quality bases \& adapters from ends of sequences
2. Execute depth-first-search of the implicit suffix tree represented by the BWT
I. If we fail to reach the end, back-track and resume search
2. BWT enables searching for good end-to-end matches entirely in RAM
I. 100s of times faster than competing approaches
3. Report the "best" n alignments
I. Best $=$ fewest mismatches/edit distance, possibly weighted by QV
2. Some reads will have millions of equally good mapping positions
3. If reads are paired, try to find mapping that satisfies both

Mapping Applications

- Mapping Algorithms
- Bowtie: (BWT) Fastest, No indels => moderate sensitivity
- BWA: (BWT) Fast, small indels => good sensitivity
- Novoalign: (Hash Table) Slow, RAM intensive, big indels => high sensitivity
- Variation Detection
- SNPs
- SAMTools: Bayesian model incorporating depth, quality values, also indels
- SOAPsnp: SAMTools + known SNPs, nucleotide specific errors, no indels
- Structural Variations
- Hydra:Very sensitive alignment, scan for discordant pairs
- Large indels: Open Research Problem to assembly their sequence
- Copy number changes
- RDexplorer: Scan alignments for statistically significant coverage pileup
- Microsatellite variations
- See Mitch!

Sequence Alignment Summary

- Distance metrics:
- Hamming: How many substitutions?
- Edit Distance: How many substitutions or indels?
- Sequence Similarity: How similar (under this model of similarity)?
- Techniques
- Seed-and-extend:Anchor the search for in-exact using exact only
- Dynamic Programming: Find a global optimal as a function of its parts
- BWT Search: implicit DFS of SA/ST
- Sequence Alignment Algorithms: Pick the right tool for the job
- Smith-Waterman: DP Local sequence alignment
- BLAST:Homology Searching
- MUMmer:Whole genome alignment, short read mapping (with care)
- Bowtie/BWA/Novoalign: short read mapping

Break

Graphs

- Nodes
- People, Proteins, Genes, Neurons, Sequences, Numbers, ...
- Edges
- A is connected to B
- A is related to B
- A regulates B
- A precedes B
- A interacts with B
- A is related to B
- ...

Graph Types

Kevin Bacon and Bipartite Graphs

Q1:
Find any path from
Kevin Bacon
to Jason Lee

Depth First Search: 6 hops

Bacon Distance:
3

Kevin Bacon and Bipartite Graphs

Q2:
Find the shortest
path from
Kevin Bacon
to
Jason Lee

Breadth First Search:
4 hops
Bacon Distance:
2

[How many nodes will it visit?]
[What's the running time?]
[What happens for disconnected components?]

BFS and TSP

- BFS computes the shortest path between a pair of nodes in $\mathrm{O}(|\mathrm{E}|)=\mathrm{O}\left(|\mathrm{N}|^{2}\right)$
- What if we wanted to compute the shortest route visiting every node once?
- Traveling Salesman Problem

$$
\begin{aligned}
& \text { ABDCA: } 4+2+5+3=14 \\
& \text { ACDBA: } 3+5+2+4=14^{*} \\
& \text { ABCDA: } 4+1+5+1=11 \\
& \text { ADCBA: } 1+5+1+4=11 * \\
& \text { ACBDA: } 3+1+2+1=7 \\
& \text { ADBCA: } 1+2+1+3=7 *
\end{aligned}
$$

Greedy Search

Greedy Search

cur=graph.smallestEdge()
while (!done)
next=cur.getNextClosest()

Greedy: \quad ABDCA $=I+I+I+50=53$
Optimal: \quad ACBDA $=1+19+1+2 \mid=42$

Greedy finds the global optimum only when
I. Greedy Choice: Local is correct without reconsideration
2. Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Making change with the fewest number of coins

TSP Hardness

- No known way to partition the problem
- Knowing optimal tour through n cities doesn't seem to help much for $n+1$ cities

[How many possible tours for n cities?]
- Extensive searching is the only known provably correct algorithm
- Brute Force:
- ~20 cities max
- $20!=2.4 \times 10^{18}$

Branch-and-Bound

- Abort on suboptimal solutions as soon as possible
- ADBECA $=1+2+2+2+3=10$
$-\mathrm{ABDE}=4+2+30>10$
- ADE $=1+30>10$
- AED $=1+30>10$

- Performance Heuristic
- Always gives the optimal answer
- Doesn't always help performance, but often does
- Current TSP record holder:
- 85,900 cities
[When not?]
- $85900!=10^{386526}$

TSP and NP-complete

- TSP is one of many extremely hard problems of the class NP-complete
- Extensive searching is the only way to find an exact solution
- Often have to settle for approx. solution

- WARNING: Many optimization problems are in this class
- Find a tour the visits every node once
- Find the smallest set of vertices covering all the edges
- Find the largest clique in the graph
- Find a set of items with maximal value but limited weight
- Maximizing the number of tetris pieces played
- ...
- http://en.wikipedia.org/wiki/List_of_NP-complete_problems

Shortest Common Superstring

Given: $S=\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{n}\right\}$
Problem: Find minimal length superstring of S

$$
\begin{array}{cll}
& \mathrm{s}_{1,} \mathrm{~s}_{2}, \mathrm{~s}_{3}=\text { CACCCGGGTGCCACC } & 15 \\
\mathrm{~s}_{1} \mathrm{CACCC} & \mathrm{~s}_{1}, \mathrm{~s}_{3}, \mathrm{~s}_{2}=\text { CACCCACCGGGTGC14 } & \\
\mathrm{s}_{2} \text { CCGGGTGC } & \mathrm{s}_{2}, \mathrm{~s}_{1}, \mathrm{~s}_{3}=\text { CCGGGTGCACCCACC } & 15 \\
\mathrm{~s}_{3} \text { CCACC } & \mathrm{s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{1}=\text { CCGGGTGCCACCC } & 13 \\
& \mathrm{~s}_{3}, \mathrm{~s}_{1}, \mathrm{~s}_{2}=\text { CCACCCGGGTGC } & 12 \\
& \mathrm{~s}_{3}, \mathrm{~s}_{2}, \mathrm{~s}_{1}=\text { CCACCGGGTGCACCC } & 15
\end{array}
$$

NP-Complete by reduction from Vertex-Cover and later Directed-Hamiltonian-Path

Paths through graphs and assembly

- Hamiltonian circuit: visit each node (read) exactly once, returning to the start
- If we could do this fast, we could exactly assemble genomes as the shortest common superstring

Assembling a Genome

I. Shear \& Sequence DNA

2. Construct assembly graph from overlapping reads
3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Illumina Sequencing by Synthesis

1. Prepare
2. Attach

3. Image

4. Basecall

Metzker (2010) Nature Reviews Genetics I I:3I-46

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation 300bp

Mate-pair sequencing

- Circularize long molecules (I-IOkbp), shear into fragments, \& sequence
- Mate failures create short naired-end reads

10kbp

2x100 @ ~10kbp (outies)

2x100 @ 300bp (innies)

Typical contig coverage

Imagine raindrops on a sidewalk

Genome Coverage Distribution

This is the mathematically model => reality may be much worse

Coverage and Read Length

Idealized Lander-Waterman model

- Reads start at perfectly random positions
- Poisson distribution in coverage
- Contigs end when there are no overlapping reads
- Contig length is a function of coverage and read length
- Effective coverage reduced by oll
- Short reads require much higher coverage to reach same expected contig length

Lander Waterman Expected Contig Length vs Coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1 I65-I I73.

Two Paradigms for Assembly

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (20I0) Genome Research. 20:1 I65-I I73.

Initial Contigs

- After simplification and correction, compress graph down to its non-branching initial contigs
- Aka "unitigs","unipaths"

Repeats and Read Length

- Explore the relationship between read length and contig N50 size
- Idealized assembly of read lengths: 25, 35, 50, I00, 250, 500, 1000
- Contig/Read length relationship depends on specific repeat composition

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (20I0) BMC Bioinformatics. II:2I.

Repetitive regions

- Over 50% of the human genome is repetitive

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$\left(b_{1} b_{2} \ldots b_{k}\right)^{N}$ where $I \leq k \leq 6$ CACACACACACACACACACA	2\%
SINEs (Short Interspersed Nuclear Elements)	Alu sequence ($\sim 280 \mathrm{bp}$) Mariner elements ($\sim 80 \mathrm{bp}$)	13\%
LINEs (Long Interspersed Nuclear Elements)	$\sim 500-5,000 \mathrm{bp}$	21\%
LTR (long terminal repeat) retrotransposons	Ty I-copia, Ty3-gypsy, Pao-BEL $(\sim 100-5,000 \mathrm{bp})$	8\%
Other DNA transposons		3\%
Gene families \& segmental duplications		4\%

Repeats and Coverage Statistics

- If n reads are a uniform random sample of the genome of length G, we expect $k=n \Delta / G$ reads to start in a region of length Δ.
- If we see many more reads than k (if the arrival rate is $>A$), it is likely to be a collapsed repeat
- Requires an accurate genome size estimate
$\operatorname{Pr}(X-$ copy $)=\binom{n}{k}\left(\frac{X \Delta}{G}\right)^{k}\left(\frac{G-X \Delta}{G}\right)^{n-k}$

$$
A(\Delta, k)=\ln \left(\frac{\operatorname{Pr}(1-\text { copy })}{\operatorname{Pr}(2-\text { copy })}\right)=\ln \left(\frac{\frac{(\Delta n / G)^{k}}{k!} e^{\frac{-\Delta n}{G}}}{\frac{(2 \Delta n / G)^{k}}{k!} e^{\frac{-2 \Delta n}{G}}}\right)=\frac{n \Delta}{G}-k \ln 2
$$

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
- Coverage gaps: especially extreme GC regions
- Conflicts: sequencing errors, repeat boundaries
- Iteratively resolve longest, 'most unique' contigs
- Both overlap graph and de Bruijn assemblers initially collapse repeats into single copies
- Uniqueness measured by a statistical test on coverage

N50 size

Def: 50% of the genome is in contigs larger than N50

Example: I Mbp genome 50\%

N50 size $=30 \mathrm{kbp}$
$(300 \mathrm{k}+100 \mathrm{k}+45 \mathrm{k}+45 \mathrm{k}+30 \mathrm{k}=520 \mathrm{k}>=500 \mathrm{kbp})$
Note:
N50 values are only meaningful to compare when base genome size is the same in all cases

Assembly Algorithms

ALLPATHS-LG	SOAPdenovo	Celera Assembler
Broad's assembler (Gnerre et al. 201 I)	 BGI's assembler (Li et al. 20IO)	 JCVI's assembler (Miller et al. 2008)
De bruijn graph Short + PacBio (patching)	De bruijn graph Short reads	Overlap graph Medium + Long reads
Easy to run if you have compatible libraries	Most flexible, but requires a lot of tuning	Supports Illumina/454/PacBio Hybrid assemblies
http://www.broadinstitute.org/ software/allpaths-lg/blog/	http://soap.genomics.org.cn/ soapdenovo.htm	http://wgs-assembler.sf.net

- Attempt to answer the question: "What makes a good assembly?"
- Organizers provided simulated sequence data
- Simulated I00 base pair Illumina reads from simulated diploid organism
- 4I submissions from 17 groups
- Results demonstrate trade-offs assemblers must make

Assembly Results

Scaffolds

Contig Paths
BGI

Broad
CSHL

- No assembler was perfect!
- See tomorrow's in house for details

Summary

Graphs are ubiquitous in the world

- Pairwise searching is easy, finding features is hard

Assembly quality depends on
I. Coverage: low coverage is mathematically hopeless
2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats
4. Error rate: errors reduce coverage, obscure true overlaps

Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds

- Extensive error correction is the key to getting the best assembly possible from a given data set

Supplemental

BWT Exact Matching

- $\operatorname{LFc}(r, c)$ does the same thing as LF(r) but it ignores r ' s actual final character and "pretends" it's c:

$$
\operatorname{LFc}(5, g)=8
$$

\$acaacg
atcg\$ac
acaacg \$
acg \$aca
caacg\$agL
cg\$aca
Rank: ${ }^{2} \mathbf{g}$.aca ac
Rank: 2
F

BWT Exact Matching

- Start with a range, (top, bot) encompassing all rows and repeatedly apply LFc: top $=\operatorname{LFc}($ top, qc); bot $=\operatorname{LFc}(b o t, q c)$ $\mathrm{qc}=$ the next character to the left in the query

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.

BWT Exact Matching

- If range becomes empty (top $=$ bot) the query suffix (and therefore the query as a whole) does not occur

