
Alignment & Assembly
Michael Schatz

Bioinformatics Lecture 3
Quantitative Biology 2011

Exact Matching Review
Where is GATTACA in the human genome?

E=183,105

BLAST, MAQ, ZOOM,
RMAP, CloudBurst

Seed-and-extend

Hash Table
(>15 GB)

MUMmer, MUMmerGPU

Tree Searching

Suffix Tree
 (>51 GB)

Vmatch, PacBio Aligner

Binary Search

Suffix Array
(>15 GB)

Brute Force
(3 GB)

Naive

Slow & Easy

BANANA!
BAN!!
 ANA!
 NAN!
 ANA!

Sequence Alignment Review

Guaranteed optimal, but slow

DP Alignment BLAST

Seed-and-extend for "good" matches to a DB

MUMmer

Whole Genome Alignment w/ Suffix Tree

Bowtie

Fast searching for short read mapping

Whole Genome Alignment
with MUMmer

Slides Courtesy of Adam M. Phillippy
amp@umics.umd.edu

Goal of WGA
•  For two genomes, A and B, find a mapping from

each position in A to its corresponding
position in B

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA

41 bp genome

Not so fast...
•  Genome A may have insertions, deletions,

translocations, inversions, duplications or SNPs
with respect to B (sometimes all of the above)

CCGGTAGGATATTAAACGGGGTGAGGAGCGTTGGCATAGCA

CCGCTAGGCTATTAAAACCCCGGAGGAG....GGCTGAGCA

WGA visualization
•  How can we visualize whole genome alignments?

•  With an alignment dot plot
–  N x M matrix

•  Let i = position in genome A
•  Let j = position in genome B
•  Fill cell (i,j) if Ai shows similarity to Bj

–  A perfect alignment between A and B would completely fill
the positive diagonal

T

G

C

A

A C C T

B

A

B

A

Translocation Inversion Insertion

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf

MUMmer
•  Maximal Unique Matcher (MUM)

–  match
•  exact match of a minimum length

–  maximal
•  cannot be extended in either direction without a mismatch

–  unique
•  occurs only once in both sequences (MUM)
•  occurs only once in a single sequence (MAM)
•  occurs one or more times in either sequence (MEM)

Fee Fi Fo Fum,
is it a MAM, MEM or MUM?

R

Q

MUM : maximal unique match
MAM : maximal almost-unique match
MEM : maximal exact match

Seed and Extend
•  How can we make MUMs BIGGER?

1.  Find MUMs
w  using a suffix tree

2.  Cluster MUMs
w  using size, gap and distance parameters

3.  Extend clusters
w  using modified Smith-Waterman algorithm

Seed and Extend
visualization

R

Q

FIND all MUMs
CLUSTER consistent MUMs
EXTEND alignments

WGA example with nucmer
•  Yersina pestis CO92 vs. Yersina pestis KIM

–  High nucleotide similarity, 99.86%
•  Two strains of the same species

–  Extensive genome shuffling
•  Global alignment will not work

–  Highly repetitive
•  Many local alignments

WGA Alignment

See manual at http://
mummer.sourceforge.net/manual

nucmer –maxmatch CO92.fasta KIM.fasta
-maxmatch Find maximal exact matches (MEMs)

delta-filter –m out.delta > out.filter.m
-m Many-to-many mapping

show-coords -r out.delta.m > out.coords
-r Sort alignments by reference position

dnadiff out.delta.m
Construct catalog of sequence variations

mummerplot --large --layout out.delta.m
--large Large plot
--layout Nice layout for multi-fasta files
--x11 Default, draw using x11 (--postscript, --png)
*requires gnuplot

References
–  Documentation

•  http://mummer.sourceforge.net
»  publication listing

•  http://mummer.sourceforge.net/manual
»  documentation

•  http://mummer.sourceforge.net/examples
»  walkthroughs

–  Email
•  mummer-help@lists.sourceforge.net
•  amp@umiacs.umd.edu

Bowtie: Ultrafast and memory
efficient alignment of short DNA
sequences to the human genome

Slides Courtesy of Ben Langmead
(langmead@umiacs.umd.edu)

Short Read Applications
•  Genotyping: Identify Variations

•  *-seq: Classify & measure significant peaks

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC…
GCGCCCTA

GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT
TTGCGGTA

GCGGTATA

GTATAC…

TCGGAAATT
CGGAAATTT

CGGTATAC

TAGGCTATA

GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT

TCGGAAATT
CGGAAATTT
CGGAAATTT

AGGCTATAT
AGGCTATAT
AGGCTATAT

GGCTATATG
CTATATGCG

…CC
…CC
…CCA
…CCA
…CCAT

ATAC…
C…
C…

…CCAT
…CCATAG TATGCGCCC

GGTATAC…
CGGTATAC

GGAAATTTG

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC…
ATAC… …CC

 GAAATTTGC

Short Read Alignment

•  Given a reference and a set of reads, report at
least one “good” local alignment for each read
if one exists
–  Approximate answer to: where in genome did read originate?

…TGATCATA…
 GATCAA

…TGATCATA…
 GAGAAT

better than

•  What is “good”? For now, we concentrate
on:

…TGATATTA…
 GATcaT

…TGATcaTA…
 GTACAT

better than

–  Fewer mismatches is better
–  Failing to align a low-quality

base is better than failing to
align a high-quality base

Indexing
•  Genomes and reads are too large for direct

approaches like dynamic programming
–  Genome indices can be big. For human:

•  Large indices necessitate painful compromises
1.  Require big-memory machine
2.  Use secondary storage

> 35 GBs > 12 GBs > 12 GBs

3.  Build new index each run
4.  Subindex and do multiple passes

Burrows-Wheeler Transform

•  Reversible permutation of the characters in a text

•  BWT(T) is the index for T

Burrows-Wheeler
Matrix BWM(T)

BWT(T) T

A block sorting lossless data compression algorithm.
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124

α
β
γ
β
γ

α

Rank: 2

Rank: 2

LF Property
implicitly encodes
Suffix Array

Burrows-Wheeler Transform

•  Reversible permutation of the characters in a text

•  BWT(T) is the index for T

Burrows-Wheeler
Matrix BWM(T)

BWT(T) T

A block sorting lossless data compression algorithm.
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124

α
β

β

α

LF Property
implicitly encodes
Suffix Array

Burrows-Wheeler Transform

•  Recreating T from BWT(T)
– Start in the first row and apply LF repeatedly,

accumulating predecessors along the way

Original T

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G T TA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G T TA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

BWT Short Read Mapping
1.  Trim off very low quality bases & adapters from ends of

sequences

2.  Execute depth-first-search of the implicit suffix tree
represented by the BWT

1.  If we fail to reach the end, back-track and resume search
2.  BWT enables searching for good end-to-end matches entirely in RAM

1.  100s of times faster than competing approaches

3.  Report the "best" n alignments

1.  Best = fewest mismatches/edit distance, possibly weighted by QV
2.  Some reads will have millions of equally good mapping positions
3.  If reads are paired, try to find mapping that satisfies both

Mapping Applications
•  Mapping Algorithms

–  Bowtie: (BWT) Fastest, No indels => moderate sensitivity
–  BWA: (BWT) Fast, small indels => good sensitivity
–  Novoalign: (Hash Table) Slow, RAM intensive, big indels => high sensitivity

•  Variation Detection
–  SNPs

•  SAMTools: Bayesian model incorporating depth, quality values, also indels
•  SOAPsnp: SAMTools + known SNPs, nucleotide specific errors, no indels

–  Structural Variations
•  Hydra: Very sensitive alignment, scan for discordant pairs
•  Large indels: Open Research Problem to assembly their sequence

–  Copy number changes
•  RDexplorer: Scan alignments for statistically significant coverage pileup

–  Microsatellite variations
•  See Mitch!

Sequence Alignment Summary
•  Distance metrics:

–  Hamming: How many substitutions?
–  Edit Distance: How many substitutions or indels?
–  Sequence Similarity: How similar (under this model of similarity)?

•  Techniques
–  Seed-and-extend: Anchor the search for in-exact using exact only
–  Dynamic Programming: Find a global optimal as a function of its parts
–  BWT Search: implicit DFS of SA/ST

•  Sequence Alignment Algorithms: Pick the right tool for the job
–  Smith-Waterman: DP Local sequence alignment
–  BLAST: Homology Searching
–  MUMmer: Whole genome alignment, short read mapping (with care)
–  Bowtie/BWA/Novoalign: short read mapping

Break

Graphs

A B

•  Nodes
–  People, Proteins, Genes, Neurons, Sequences, Numbers, …

•  Edges
–  A is connected to B
–  A is related to B
–  A regulates B
–  A precedes B
–  A interacts with B
–  A is related to B
–  …

Biological Networks

Graph Types

A

B

C

List Tree

A

B C D

F H G E

I J

Directed
Acyclic
Graph

A

C D E

F

G

B

A

B C

D E

Cycle

A

B C

D E

Complete

Kevin Bacon and Bipartite Graphs
72

60

35

31

45

Q1:
Find any path

from
Kevin Bacon

to
Jason Lee

Depth First Search:
6 hops

Bacon Distance:

3

Kevin Bacon and Bipartite Graphs
72

60

35

31

45

Q2:
Find the shortest

path from
Kevin Bacon

to
Jason Lee

Breadth First Search:
4 hops

Bacon Distance:

2

0

A

B

C

D

E

F

G

J

H

L

I

M

N

O

K 0 B:1

A:1

D:2 I:3

E:7

G:2 L:3 C:1

H:2 M:3

N:5

O:4

J:6

F:7 K:8

0
A,B,C
A,B,G,H
A,B,G,M
A,B,G
A,B,L
A,B,O
A,B,N
A,B,J
A,B,E,F
A,B,E,K
A,B,E
A,B
A
D
I

DFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
 cur = list.end()
 if (cur == stop)
 print cur.dist;
 else
 foreach child in cur.children
 if (child.dist == -1)
 child.dist = cur.dist+1
 list.addEnd(child)

DFS

[How many nodes will it visit?]

[What's the running time?]

[What happens for disconnected
components?]

0

A

B

C

D

E

F

G

J

H

L

I

M

N

O

K 0

A

B

C

D

E

F

G

J

H

L

I

M

N

O

K

0
A,B,C
B,C,D,E
C,D,E,F,L
D,E,F,L,G,H
E,F,L,G,H,I
F,L,G,H,I,J
L,G,H,I,J,K
G,H,I,J,K,O
H,I,J,K,O
I,J,K,O,M
J,K,O,M
K,O,M,N
O,M,N
M,N
N

0

A:1

B:1

C:1

N:4

D:2

E:2

F:2

G:2

H:2

L:2

J:3

I:3

M:3

O:3

K:3

BFS
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
 cur = list.begin()
 if (cur == stop)
 print cur.dist;
 else
 foreach child in cur.children
 if (child.dist == -1)
 child.dist = cur.dist+1
 list.addEnd(child)

0 B:1

A:1

D:2 I:3

E:7

G:2 L:3 C:1

H:2 M:3

N:5

O:4

J:6

F:7 K:8

DFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
 cur = list.end()
 if (cur == stop)
 print cur.dist;
 else
 foreach child in cur.children
 if (child.dist == -1)
 child.dist = cur.dist+1
 list.addEnd(child)

DFS
0
A,B,C
A,B,G,H
A,B,G,M
A,B,G
A,B,L
A,B,O
A,B,N
A,B,J
A,B,E,F
A,B,E,K
A,B,E
A,B
A
D
I

BFS and TSP
•  BFS computes the shortest path between a

pair of nodes in O(|E|) = O(|N|2)

•  What if we wanted to compute the shortest
route visiting every node once?
– Traveling Salesman Problem

C

A

D

B
4

1

3

1

5

2

ABDCA: 4+2+5+3 = 14
ACDBA: 3+5+2+4 = 14*
ABCDA: 4+1+5+1 = 11
ADCBA: 1+5+1+4 = 11*
ACBDA: 3+1+2+1 = 7
ADBCA: 1+2+1+3= 7 *

Greedy Search
Greedy Search
cur=graph.smallestEdge()
while (!done)

 next=cur.getNextClosest()

Greedy: ABDCA = 1+1+1+50= 53
Optimal: ACBDA = 1+19+1+21 = 42

Greedy finds the global optimum only when
1.  Greedy Choice: Local is correct without reconsideration
2.  Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Making change with the fewest number of coins

C

A

D

B
1

19

1

21

50

1

TSP Hardness

•  No known way to partition the
problem
–  Knowing optimal tour through n cities

doesn't seem to help much for n+1
cities

[How many possible tours for n cities?]

•  Extensive searching is the only
known provably correct algorithm
–  Brute Force:

•  ~20 cities max
•  20! = 2.4 x 1018

C

A

D

B
4

1

3

1

5

2

C

A

D

B
4

1

3

1

5

2

E
30 2

1
2

Branch-and-Bound
•  Abort on suboptimal solutions

as soon as possible
–  ADBECA = 1+2+2+2+3 = 10
–  ABDE = 4+2+30 > 10
–  ADE = 1+30 > 10
–  AED = 1+30 > 10
–  …

C

A

D

B
4

1

3

1

5

2

E
30 2

1
2

•  Performance Heuristic
–  Always gives the optimal answer
–  Doesn't always help performance, but often does
–  Current TSP record holder:

•  85,900 cities
•  85900! = 10386526

[When not?]

TSP and NP-complete
•  TSP is one of many extremely hard

problems of the class NP-complete
–  Extensive searching is the only way to

find an exact solution
–  Often have to settle for approx. solution

•  WARNING: Many optimization problems are in this class
–  Find a tour the visits every node once
–  Find the smallest set of vertices covering all the edges
–  Find the largest clique in the graph
–  Find a set of items with maximal value but limited weight
–  Maximizing the number of tetris pieces played
–  …
–  http://en.wikipedia.org/wiki/List_of_NP-complete_problems

Given: S = {s1, …, sn}

Problem: Find minimal length superstring of S

s1,s2,s3 = CACCCGGGTGCCACC 15

s1,s3,s2 = CACCCACCGGGTGC 14

s2,s1,s3 = CCGGGTGCACCCACC 15

s2,s3,s1 = CCGGGTGCCACCC 13

s3,s1,s2 = CCACCCGGGTGC 12

s3,s2,s1 = CCACCGGGTGCACCC 15

s1 CACCC

s2 CCGGGTGC

s3 CCACC

NP-Complete by reduction from VERTEX-COVER and later DIRECTED-HAMILTONIAN-PATH

Shortest Common Superstring

Paths through graphs and assembly

•  Hamiltonian circuit: visit each node (read)
exactly once, returning to the start
–  If we could do this fast, we could exactly assemble

genomes as the shortest common superstring

A

B D C

E

H
G

I

F

A

B

C

D H
I

F

G
E

Genome

Assembling a Genome

2. Construct assembly graph from overlapping reads

…AGCCTAGACCTACAGGATGCGCGACACGT

 GGATGCGCGACACGTCGCATATCCGGT…

3. Simplify assembly graph

 1. Shear & Sequence DNA

4. Detangle graph with long reads, mates, and other links

Illumina Sequencing by Synthesis

Metzker (2010) Nature Reviews Genetics 11:31-46
http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf

1. Prepare

2. Attach

3. Amplify

4. Image

5. Basecall

Paired-end and Mate-pairs
Paired-end sequencing
•  Read one end of the molecule, flip, and read the other end
•  Generate pair of reads separated by up to 500bp with inward orientation

Mate-pair sequencing
•  Circularize long molecules (1-10kbp), shear into fragments, & sequence
•  Mate failures create short paired-end reads

10kbp

10kbp
circle

300bp

2x100 @ ~10kbp (outies)

2x100 @ 300bp (innies)

Typical contig coverage

1
2
3
4
5
6 C

ov
er

ag
e

Contig

Reads

Imagine raindrops on a sidewalk

Genome Coverage Distribution

This is the mathematically model => reality may be much worse

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Depth

E
xp

ec
te

d
Fr

ac
tio

n
of

 g
en

om
e

>=
 d

ep
th

 avg cov
10x
20x
30x
40x

Coverage and Read Length
Idealized Lander-Waterman model
•  Reads start at perfectly random

positions

•  Poisson distribution in coverage
–  Contigs end when there are no

overlapping reads

•  Contig length is a function of
coverage and read length
–  Effective coverage reduced by o/l
–  Short reads require much higher

coverage to reach same expected
contig length

Lander Waterman Expected Contig Length vs Coverage

Read Coverage

E
x
p
e
c
te

d
 C

o
n
ti
g
 L

e
n
g
th

 (
b
p
)

0 5 10 15 20 25 30 35 40

1
0
0

1
k

1
0
k

1
0
0
k

1
M

+dog mean

+dog N50

+panda mean

+panda N50

1000 bp

710 bp

250 bp

100 bp

52 bp

30 bp

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.

Two Paradigms for Assembly

Short read assemblers
•  Repeats depends on word length
•  Read coherency, placements lost
•  Robust to high coverage

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.

de	 Bruijn	 Graph	

GTT

GTC

TTA

TCC

AGT AAG

GAA

TAA

AGA

ATA

Long read assemblers
•  Repeats depends on read length
•  Read coherency, placements kept
•  Tangled by high coverage

Overlap	 Graph	

Y

Z

C

D

R1 R2

B

A

X

W

Initial Contigs
•  After simplification and correction, compress graph

down to its non-branching initial contigs
–  Aka “unitigs”, “unipaths”

Repeats and Read Length

•  Explore the relationship between read length and contig N50 size
–  Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000
–  Contig/Read length relationship depends on specific repeat composition

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 250 500 750 1000

C
on

ti
g

N
50

 S
iz

e
(M

bp
)

Read Length

Bacillus anthracis
5.22Mbp

Colwellia psychrerythraea
5.37Mbp

Escherichia coli K12
4.64Mbp

Salmonella typhi
4.80Mbp

Yersinia pestis
4.70Mbp

Assembly Complexity of Prokaryotic Genomes using Short Reads.
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. 11:21.

Repetitive regions
•  Over 50% of the human genome is repetitive

61

Repeat Type Definition / Example Prevalence

Low-complexity DNA / Microsatellites (b1b2…bk)N where 1 < k < 6
CACACACACACACACACACA

2%

SINEs (Short Interspersed Nuclear
Elements)

Alu sequence (~280 bp)
Mariner elements (~80 bp)

13%

LINEs (Long Interspersed Nuclear
Elements)

~500 – 5,000 bp 21%

LTR (long terminal repeat)
retrotransposons

Ty1-copia, Ty3-gypsy, Pao-BEL
(~100 – 5,000 bp)

8%

Other DNA transposons 3%

Gene families & segmental duplications 4%

Repeats and Coverage Statistics A-stat

•! If n reads are a uniform random sample of the genome of length G,
we expect k=n!/G reads to start in a region of length!.

–! If we see many more reads than k (if the arrival rate is > A) , it is likely to be
a collapsed repeat

–! Requires an accurate genome size estimate

!

Pr(X " copy) =
n

k

$
%
&

'
(
X)

G

$
%

&

'
(

k
G " X)

G

$
%

&

'
(

n"k

!

A(",k) = ln
Pr(1# copy)

Pr(2# copy)

$

%
&

'

(
) = ln

("n /G)k

k!
e

#"n

G

(2"n /G)k

k!
e

#2"n

G

$

%

&
&
& &

'

(

)
)
))

=
n"

G
k ln2

A B C R
1

R
2

R
1 +

R
2 A B R1 R2 C R1 + R2

Scaffolding
•  Initial contigs (aka unipaths, unitigs) terminate at

–  Coverage gaps: especially extreme GC regions
–  Conflicts: sequencing errors, repeat boundaries

•  Iteratively resolve longest, ‘most unique’ contigs
–  Both overlap graph and de Bruijn assemblers initially collapse

repeats into single copies
–  Uniqueness measured by a statistical test on coverage

N50 size
Def: 50% of the genome is in contigs larger than N50

Example: 1 Mbp genome

 N50 size = 30 kbp
 (300k+100k+45k+45k+30k = 520k >= 500kbp)

Note:

N50 values are only meaningful to compare when base genome
size is the same in all cases

1000

300 45 30 100 20 15 15 10 45

50%

Assembly Algorithms

ALLPATHS-LG SOAPdenovo Celera Assembler

Broad’s assembler
(Gnerre et al. 2011)

De bruijn graph

Short + PacBio (patching)

Easy to run if you have
compatible libraries

http://www.broadinstitute.org/

software/allpaths-lg/blog/

BGI’s assembler
(Li et al. 2010)

De bruijn graph

Short reads

Most flexible, but requires a
lot of tuning

http://soap.genomics.org.cn/

soapdenovo.html

JCVI’s assembler
(Miller et al. 2008)

Overlap graph

Medium + Long reads

Supports Illumina/454/PacBio
Hybrid assemblies

http://wgs-assembler.sf.net

•  Attempt to answer the question:
 “What makes a good assembly?”

•  Organizers provided simulated sequence data
–  Simulated 100 base pair Illumina reads from simulated

diploid organism

•  41 submissions from 17 groups

•  Results demonstrate trade-offs assemblers must make

Assembly Results

•  No assembler was perfect!
– See tomorrow’s in house for details

Summary
Graphs are ubiquitous in the world

–  Pairwise searching is easy, finding features is hard

Assembly quality depends on
1.  Coverage: low coverage is mathematically hopeless
2.  Repeat composition: high repeat content is challenging
3.  Read length: longer reads help resolve repeats
4.  Error rate: errors reduce coverage, obscure true overlaps

Assembly is a hierarchical, starting from individual reads, build high
confidence contigs/unitigs, incorporate the mates to build scaffolds

–  Extensive error correction is the key to getting the best assembly possible
from a given data set

Supplemental

BWT Exact Matching
•  LFc(r, c) does the same thing as LF(r) but it

ignores r’s actual final character and
“pretends” it’s c:

Rank: 2 Rank: 2

L

F

LFc(5, g) = 8

g

BWT Exact Matching
•  Start with a range, (top, bot) encompassing all

rows and repeatedly apply LFc:
top = LFc(top, qc); bot = LFc(bot, qc)
qc = the next character to the left in the query

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.

BWT Exact Matching

•  If range becomes empty (top = bot) the
query suffix (and therefore the query as a
whole) does not occur

